
CS 4530: Fundamentals of Software Engineering

Lesson 5.1 Introduction to Testing

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Describe the elements of a test and how they are used;
• State Dijkstra’s law and its relevance;
• Describe how tests are classified by purpose, size/scope, manner;
• Explain why test automation is important.

2

Working Definition
• Software Testing is the process of checking if

software meets certain concrete requirements
• “certain” – a finite set
• “concrete” – particular, not symbolic

• Testing is carried out by execution of the software.
• Next: definitions “SUT” and “Test”

3

SUT = System Under Test
• The “System Under Test” consists of its

• Inputs
• State
• Outputs
• State Change
• (Other) Behavior

4

SystemInputs Outputs

Behavior

State Change

Running a Test
• Construct the situation:

• Set up SUT to get the state ready
• [Optional: Prepare collaborators]

• Apply the operation inputs.
• Check the outputs, verify the state change, handle

the behavior
• Handle exceptions,
• Time-Out to handle nontermination,
• Post-check with collaborators.

5

Dijkstra’s Law
“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
– Edsger Dijkstra

• The state space of a SUT is (usually)
infinite, but testing can only execute a
finite number of tests.

• Even if the state space is finite, it may
still be too large to make exhaustive
testing feasible.

6

And this ignores the fallibility of tests.
What if the tests are in error?

Classifying Tests
• We can classify tests according to several cross-

cutting dimensions:
• Purpose: Why are we testing?
• Scope: What sort of thing is the SUT?
• Size: What resources does testing need?
• Manner: How is testing performed?

7

Test Purpose
• Test Driven Development
• Regression Test

• Prevent bugs from (re-)entering during maintenance.

• Acceptance Test
• Customer-level requirement testing
• Validation: Are we building the right system ?

8

What could a test tell you?
• Function returns the exact “right” answer
• Function returns an acceptable answer

• Returns the same value as last time

• Function returns without crashing
• Function crashes (as expected)

• Same things for effects, not just returns
• How it affects the environment

9

Test Scope
• Unit tests: SUT = a single method/class/object
• Integration tests: SUT = combinations of units, a subsystem
• System tests: SUT = whole system being developed

10

1 class of one program
running on a web server

1 process running on a
web server

Venusian.ts

Unit Integration

1 web server in a cluster
of 100,000 1 Google product in the

entire Google ecosystem

Test Size follows Scope
• Small: run on a single process, no I/O

• Fast to run; can be run automatically and frequently
• Medium: run on a single machine, no network I/O (only localhost);

“hermetic”
• May be slower; delayed to overnight runs

• Large/Enormous tests: run on a network.
• May have serious $$$ cost in network services or personnel.
• Much more likely to be “flaky,” failures are more difficult to debug

See SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch11.html#testing_overview

11

We begin by ‘testing-in-the-small’ and
move toward ‘testing-in-the-large’

Manner of Testing
• Black-box vs White-box testing

• If you have access to source code

• Automated tests can be run without supervision
• Suitable for frequent automated runs

• Manual tests require a human to run and evaluate
• A human may be needed to check UI elements
• Tests may be ill-defined and nondeterministic

• e.g., trying to “break” software

• Customer-facing tests require an intermediary to evaluate as well
as the customer to use the software.

12

“black box”

“white box”

From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

at/9781492082781/ch11.html#testing_overview

Testing Distribution (How much of each kind
of testing we should do?)

13

Pyramid
Test Pattern

Caveats & Qualifications
• Typically, a new feature will require multiple tests
• The “fix” should not just be the minimum to pass

some given set of test(s)
• The programmer should keep in mind the

spec/requirements.
• But the fix should be the simplest possible that

addresses the issue.

• Tests are run frequently and thus must be fast and
deterministic.

• Occasionally, the tests may need to be fixed as well.

14

Review
• Now that you've studied this lesson, you should be able to:

• Describe the elements of a test and how they are used;
• State Dijkstra’s law and its relevance;
• Classify tests by purpose, scope and size;
• Explain why test automation is important.

15

	CS 4530: Fundamentals of Software Engineering��Lesson 5.1 Introduction to Testing
	Learning Objectives for this Lesson
	Working Definition
	SUT = System Under Test
	Running a Test
	Dijkstra’s Law
	Classifying Tests
	Test Purpose
	What could a test tell you?
	Test Scope
	Test Size follows Scope
	Manner of Testing
	Testing Distribution (How much of each kind of testing we should do?)
	Caveats & Qualifications
	Review

