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Learning Objectives for this Lesson

* By the end of this lesson, you should be able to:
* Describe the elements of a test and how they are used;
 State Dijkstra’s law and its relevance;
* Describe how tests are classified by purpose, size/scope, manner;
e Explain why test automation is important.



Working Definition

* Software Testing is the process of checking if
software meets certain concrete requirements

e “certain” — a finite set
» “concrete” — particular, not symbolic

* Testing is carried out by execution of the software.
* Next: definitions “SUT” and “Test”



SUT = System Under Test

* The “System Under Test” consists of its
* Inputs
* State
* Outputs
» State Change
e (Other) Behavior

State Change

Inputs System Outputs

Behavior



Running a Test

e Construct the situation:
e Set up SUT to get the state ready
* [Optional: Prepare collaborators]

* Apply the operation inputs.

* Check the outputs, verify the state change, handle
the behavior
* Handle exceptions,
* Time-Out to handle nontermination,
* Post-check with collaborators.



Dijkstra’s Law

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”
— Edsger Dijkstra

* The state space of a SUT is (usually)
infinite, but testing can only execute a
finite number of tests.

* Even if the state space is finite, it may
still be too large to make exhaustive
testing feasible.

And this iguores the fallibility of tests. | —
What if the tests are in error?




Classifying Tests

* We can classify tests according to several cross-
cutting dimensions:
* Purpose: Why are we testing?
* Scope: What sort of thing is the SUT?
* Size: What resources does testing need?
 Manner: How is testing performed?



Test Purpose

* Test Driven Development
* Regression Test

* Prevent bugs from (re-)entering during maintenance.

* Acceptance Test

e Customer-level requirement testing
 Validation: Are we building the right system ?



What could a test tell you?

* Function returns the exact “right” answer

* Function returns an acceptable answer
* Returns the same value as last time

* Function returns without crashing
* Function crashes (as expected)

e Same things for effects, not just returns
* How it affects the environment



Test Scope

* Unit tests: SUT = a single method/class/object
* Integration tests: SUT = combinations of units, a subsystem
e System tests: SUT = whole system being developed

Venusian.ts
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_ We begin by ‘testing-in-the-small” and
Test Size follows Sco PE  move toward ‘testing-in-the-large’

* Small: run on a single process, no I/O
* Fast to run; can be run automatically and frequently

 Medium: run on a single machine, no network |/O (only localhost);
“hermetic”

* May be slower; delayed to overnight runs

* Large/Enormous tests: run on a network.

* May have serious SSS cost in network services or personnel.
* Much more likely to be “flaky,” failures are more difficult to debug

See SoftEng @ Google Chapter 11

* https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch11.html#testing_overview
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Manner of Testing

* Black-box vs White-box testing
* |f you have access to source code i :
white box

* Automated tests can be run without supervision
 Suitable for frequent automated runs

* Manual tests require a human to run and evaluate
* A human may be needed to check Ul elements
» Tests may be ill-defined and nondeterministic
* e.g., trying to “break” software
e Customer-facing tests require an intermediary to evaluate as well
as the customer to use the software.

“black box”
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Testing Distribution (How much of each kind

of testing we should do?)

Pyramid
Test Pattern

Integration
15%

Automated
GUI Tests

Integration
Tests

Software Testing
Ice Cream Cone
Antipattern

Unit 80%

From SoftEng @ Google Chapter 11

* https://learning.oreilly.com/library/view/software-engineering-
at/9781492082781/ch11.htmli#testing_overview
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Caveats & Qualifications

* Typically, a new feature will require multiple tests

* The “fix” should not just be the minimum to pass
some given set of test(s)

* The programmer should keep in mind the
spec/requirements.

e But the fix should be the simplest possible that
addresses the issue.

* Tests are run frequently and thus must be fast and
deterministic.

* Occasionally, the tests may need to be fixed as well.
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Review

* Now that you've studied this lesson, you should be able to:
* Describe the elements of a test and how they are used;
 State Dijkstra’s law and its relevance;
 Classify tests by purpose, scope and size;
e Explain why test automation is important.
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